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NOMENCLATURE

214701y

+ >
a,b

Arbitrary 1interlaminar shear coefficlents

Vectors of arbitrary interlaminar shear
coefficlents

Plate width
Longltudinal and transverse Young's modull of

k'th lamina, respectively, with respect to
materlial axes

Subscript denoting linear-elastic-materilal
component

Vectors of arbltrary displacement coefficlents

Stress-energy-density function

Elastic, elasto-plastic, and total stress-
energy-density functions for the k'th lamina as
a functlon of lamina 1inplane stresses,
respectively

Elastic, elasto-plastic, and total stress-
energy-density functions for the matrix material
between k'th and (k+1)st lamina as a function of
transverse stresses acting between those two

layers, respectlvely
Matrix material shear modulus

k'th lamina inplane shear modulus with respect
to lamina material axes

Laminate thilckness

Vectors of arbltrary stress coefficlents

N-dimensional unit vector

Ramberg-Osgood type constants for k'th lamina
relative to the materlial axes

Index representing the k'th lamina
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fm

Xy Y52

Plate length
Total number of laminae in the laminate

Laminate 1inplane stress resultants

Ramberg-0sgood type exponents for the k'th
lamina relative to the material axes

Laminate membrane stress resultant vector

Subscript denoting nonlinear-elastic-material
component

Exponents analogous to Ramberg-0Osgood-type
exponents deflined in Reference 17

Ramberg-~0Osgood-type exponent, deflned in
Reference 17

Heat flux
Superscript denoting matrix transpose
Laminate thickness

k'th lamina thickness over which the extensional
stresses Oy and ¢ and the shearing stress
k k

act
Txyk

Thickness of matrix material between the k'th
and (k+1)st lamina's median-surfaces over which
the interlaminar shear stresses = and

act Xy Yy
Modified-Reissner functional

Median~-surface x and y displacement functions of
the k'th lamina, respectively

N-dimensional x and y displacement vectors,
respectlively

Volume

Lateral displacement funciton of laminate

Plate coordinates
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(0) (1)
ny ’ ny

nyk

Y s Y
zX).’ vz,

€effk

N12,2°"12,1

t, et Mg, 2t

Tet,t°Mat, 2

(0) (1)
Oy 30y T

L0 (1)
y 'y

1t

ka

Laminate averaged inplane shear stresses
relative to plate axes

Medlan-surface shearing strains of k'th lamina
relative to plate axes

Interlaminar shearing strains acting between the

median-surfaces of the k'th and (k+l)st laminae
relative to plate axes

Effective strain defined in Equation (18)

Lamina coefficients of mutual influence relative
to materlal axes

Coefficients of mutual influence relative to
material axes

Temperature
Thermal diffusivity

Major and minor Polsson's ratios of k'th lamina,
respectively, relative to the material axes

Median-surface extensional stresses of k'th
lamina relative to the material axes

Medlan-surface extenslonal stresses of the k'th
lamina relative to the plate aves

Laminate averaged extenslonal stresses relative
to plate axes

Medlan-surface shearing stress of k'th lamina
relative to material axes

Median-surface shearing stress of k'th lamina
relative to plate axes
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yz’sz

(0) (1)
yz ’'yz
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Laminate averaged 1inplane shear stress relative
to plate axes

Interlaminar shear stress vectors

Laminate averaged transverse shearing stresses
relative to plate axes
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PROJECT SUMMARY

CONTRACT NUMBER: F33615-86-C-3218

CONTRACTOR: Anamet Laboratories, Inc.
3400 Investment Blvd.
Hayward, CA 94545-3811

PRINCIPAL INVESTIGATOR: Rocky Richard Arnold, Ph.D.

TITLE OF THE PROJECT: Rapid Thermal Loading of Delaminated
Composite Structures

TECHNICAL DESCRIPTION

The research program proposed hereln was directed toward develop-
ing a theoretical approach to the problem of rapid thermal loading
of delaminated composite structure. The structures examined
include flat and shallow-curved plates and cylindrical shells.
Using Hamilton's principle and the Reissner variational theorem,
a new dynamic thermoelastic variational principle was developed.
Application of this principle to both plates and shells provided
the equations of dynamic equilibrium and the assoclated natural
and geometric boundary conditions. Important physically observ-
able characterlstics of composites, not usually found 1n clas-
sical approaches, were also 1ncluded in the theory. These
characteristics include transverse shear, material nonlinearity
and delamination mechanisms.

In this Phase I effort, the thermoelastic model was defined
and the governing equatlions derived for both contiguous and de-
laminated plate and shell structures. Solution of the governing
equations and numerical examples constitutes the major emphasls
of the Phase II work.

COMMERCIAL APPLICATION

The most immediate benefilt “rom the proposed effort will be the
ability to design/analyze d2laminated composite structures with
improved resistance to rapla therm=! 1loading. This ks direct
application to various military systems, especlally alrcraft that
may be subject to hostile laser threats. Other potential appli-
cations include future hypersonlc vehicles and civillan transport
alrcraft, wherein lower rates of thermal loading are of concern.
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1.0 INTRODUCTION

Thils 18 the Phase I final report for work accomplished under
U.S. Alr Force Contract No. F33615-86-C-3218, as a part of the
Federally-sponsored Small Business Innovation Research (SBIR)
program. The period of technical performance was from July 31,
1986 to January 31, 1987. The research and development effort
documented herein was accomplished for AFWAL/GLXPF.

The primary objective of the Phase I research was to derive
a set of governing equations for both contiguous and delaminated
composite plates and shells subject to intense rapid thermal
heating. These equatlons are amenable to programming on a digital
computer, which is the primary emphasls of any potential Phase II
work. The objective of thils research has been successfully
accomplished and the assumptions and derivations used to complete

this project are documented within this final report.

2.0 THEORY

The baslc structural configurations under conslderation
herein a~e the flat plate, shallow-curved plate, and complete
circular shell. Schematlic dlagrams of these baslc aircraft
structures and the coordinate systems used in the ensuing deri-
vations are included in Figure 1. For all structural configura-
tions, the laminated composite 1s examlned in two distinctly
different states; that 1is, either the composlite 1is undamaged
(contiguous state), or the composite is delaminated presumably
through the actlon of a rapid thermal pulse. 1In both cases, the
primary theoretical derivations are identical--differences between
elther the contiguous or delaminated composite configurations are
manifested by the appropriate cholice of stress and displacement
functions which will be explained in more detall in a latter part
of this report (Section 3.1).

In this section, the basic theoretical derivations, valld
for both contiguous and delaminated composite configurations, are

developed and limiting assumptlons stated.

1
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2.1 Statement of Problem and Principal Assumptions
The plate and shell elements consist of N homogeneous and
materlally nonlinear anisotropic laminae with each lamina having

thickness tfm . Each element of a lamina midsurface can undergo
k

three translations, two inplane displacements, uk and
vk(k=l,2,...N), and a lateral displacement w which is common to

all laminae. The 1inplane stresses o , ¢ and ¢ are assumed
Xk Yx g
constant through the thickness of each lamina.

The bending stiffness of an individual lamina 1s assumed
negligible compared to that of the laminate; that 1s, laminae are
assumed to behave as membranes. Consequently, transverse shear
effects are accommodated by permlitting relative movement between
the medlan planes of adjacent lamlnae. The matrix materilal
between adjacent laminae midsurfaces 1s assumed to carry all of
the transverse shear in the y-z and z-x planes. The normal
stress (oz) 1s taken to be negligible in comparison with the
other interlaminar stresses (=x z’sz) for the composites plates
considered herein; namely, those that buckle in the linear-elastic
range and become elasto-plastic 1n the postbuckling range.

The assumptiors cilted above are known to be valid for the
contiguous composite [1]; however, for a delaminated composite
the normal stress (oz) that would exist at the interface between
adjacent laminae that contaln the delamination 1s not necessarily
negligible. During the Phase II work, a closer examination of
thls assumption will be accomplished and, if required, sultable
modifications made to the approach proposed hereiln.
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2.2 Strain-Displacement Relations

The ultimate success of any theoretical model 1s the
appropriate definition of initial assumptions--these initial
assumptions determine the accuracy and utility of the finally-
deveioped analytical methed. For this research, the membrane
strain-displacement relations of Sanders [2] are used. For a
circular cylindrical shell, these relations are:

=3y 1.0w,2

e T ax * 2(8x) (1)
=V _w  law  v.2

&v "3y "R T 2(ay * 5) (2)
- 9V L, du _ OW W _ V 3W

Yxy T3x T3y T ax 3y R ax (3)

For shallow-curved shells, the underlined terms are ignored and
in the case of flat plates, the radlius becomes infinite (R+x).

Sanders' complete strain-displacement expressions are valid
when (1) the Kirchoff-Love hypothesis holds, (2) middle surface
strains and rotations out of the middle surface are small in
comparison to unity (note: the displacement components are not
necessarily small), and (3) rotations about the normals to the
middle surface are small in comparison to rotatlons out of the
middle surface.

To allow for the inclusion of transverse strain in the
varlational formulation, Equations 1-3 are used to deflne the
membrane strains in each 1ndividual lamina, and the lamina summa-
tions process provides the proper strain-displacement relatlons
in bending (much in the same way classical lamination theory 1s
developed). This approach has been used previously in Refer-
ences 1,3-5 wherein a unique model for inclusion of transverse
shear in laminated composites has been shown to be very accurate
in the prediction of initial buckling and plate bending problems.
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When the inplane and bending straln-displacement relations are

decoupled in thils manner, the Kirchoff-Love hypothesis 1s effec-

tively removed as an initlal assumption and the transverse shear

strailn-displacement relations become

- u

_oow . Y+l k
Yzx T ax * t
My
_oaw , Yk+l T Yk
Yyz oy t
My

2.3 Constitutive Relations

The nonlinear elastic stress-strain relations used (in

(4)

(5)

material coordinates) are based on those of Reference 1 and are

shown below.

g v n
L Lt L.t
€ = {——— - g 4 —=2r o
Zk Ez El t Gzt 1t
(o} \Y n
t te t, Lt
€ = {_.. - g + —=2 =7
tk Et Et £ Gzt Lt
T n n
Lt Lt, 2 L, t
Y = { + 2 + ——ta
ltk Gzt E2 L Et
T T n
= (Y2 J4Zy m
Yyz Gm * Kn(E) Tk
k m
5

(6)

(7

(8)

(9)
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Yox, = gt Km(sz) m}k (10)

Equations 9 and 10 reflect the transverse shear present in the
model. Note, in each equation a Ramberg-Osgood [6] type formula-
tion 1s used to describe the 1lnelastic behavior of the composite
material. These relations or very similar ones have been used 1in
the solution of several different types of problems [7,8], and 1n
each case, the resulting numerical model has been shown to be
gqulte accurate and efficient.

2.4 Modified Hamilton/Reissner Principle

The basls of the analytical procedure developed during this
research 1s the extension of Hamilton's principle from rigid to
deformable bodlies. Hamilton's principle 1s stated as,

t

2
§= [ (T -U-=-WV)dt =0 (11)

t
1

where tl and t2 are arbiltrary time values, T 1s the kinetlc energy

and U+V 1s the total potentlial energy of the system. The kinetlic
energy 1s the sum of kinetlc energies assoclated with each of the

orthogonal velocities (axial, tangential, and radial); that 1is,

1 a/2 b/2 h/2 U
T=5 | / [ el(5%)
-a/2 -b/2 =h/2

n
+
™
-t}
<
N
N
+
—~~
-

3%)2]dzdydx (12)

where o 1s the mass density of the material. Now, if Hamilton's
principle 1is modified by replacing the strain energy U with the
Reissner functional U" [9], the variational equation becomes
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t

2
§ = [ (T - UmM)dt = 0 (13)

!

where the Reissner functional is

a/2 b/2 h/2
ur = / [ F" dzdydx (14)
-a/2 -b/2 -h/2

and F" 1is the Relssner functional

+ - 1
x °x yy TX.YYXY * TyZsz * TaxYzx F fm (15)

The quantity F' is the stress-energy-density function which
for a laminae 1is given by

K K
where
. _ 1 °i °§ Vet | Vtg Mg, 2t . Mat, s
fhn, T ElE T E TS TR T G T e
. (eaet . Met,t Tit
( G, * E, Jogtag * Glt}k (a7

and

K (n -1)
F! = {__2—_ € e (02 - v o g + n G T )
fm (n,+1)E eff L gt et Lt,2 ¢ &t
Py L L
7
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K (n_-1)
+ — € ¢ (02 - v.,0,0. + 7 g, T )
(nt+l)Et eff t te et E,tt &t
L 13 1 1 ](1'“zt)/2
2 " Ty, v )
Kot e(nzt-l)(T2
(n£t+1)G£t eff Lt
et % Tee Y Mg, 06% Vet Mk
The effective strain 1s defined by
+
Ceft {(g£)2 + (§E12 - (vzg E o 9%t
ek 3 t Lt
2
. 3 1 1l {(th)
2(1+v£t) 2(1+vt£) th

n +n n +n 1/2
2,8t '2t, t,et 'at,t
+ (—= =lo,t,, + 2 Yo, 1 } (18)
Eszt L Lt Etht 2 2ti'k
For transverse shear
F! = P! + B (19)

m m m
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where
2 2
' = ._T_Lz tzx (20)
F = {35 * 36 Ik
e m m
k
and
K n (n_+1)/2
_ m 1 ym 2 2 m
Fop = gy © (&) (ryz * 2x) k (21)
Py m m

where Equations 6, 7, and 8 apply to inplane behavior and Equa-
tions 9 and 10 are applicable to transverse shear in the laminate.
It should be noted that the derivative of the qguantity F' with
respect to any stress component provides the required strailn
component.

By combining the straln-displacement relatlons and consti-
tutive relations of Sections 2.2 and 2.3 with the modified
Hamilton's principle, a complete new variational problem 1is
defined. The resulting modified Hamilton/Reissner functional 1is
presented in Appendix A 1in vector-matrix form [10]. It is
stated, but not proven herein, that the first variation of the
modified Hamilton/Reissner functional provides both the governing
equations of dynamic equilibium along with the assoclated stress-
displacement boundary condltions and the constitutive
relationships.

2.5 Temperature-Distribution History

For each kind of structure examined in this study, the
thermal forcing function is a suddenly applied uniform heat flux
acting over the surface z = -h/2 (see Figure 1) while surface

9
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z = h/2 1s presumed to be perfectly insulated. These conditions
are exactly those analyzed by Boley and Barber [11], Kraus [12],
and Lu and Sun {13]. They are selected here for convenilent
comparison of present results with those of previous analyses.

The temperature distribution history, given by solution of
the one-dimensional Fourler heat conductlion equation, 1s

o(z,8) = L X5 p + 2 (3 -5°% - %
h
«© n 2
- 25 2 (_é) e x(nn/MTt 1 os nn(% - %)] (22)
T n=1 n

where q 1s the heat flux, h 1s the thickness of the shell, k 1is
the thermal conductivity, and « 1s the thermal diffusivity. In
Figure 2, the temperature-distribution through the thickness
corresponding to q = 10 1is plotted at intervals of 1/100 of a
thermal perlod for a duration of one thermal period.

3.0 METHOD OF SOLUTION

Extremization of the Reissner functional (Appendix B)
produces the governing equilibrium and constitutive equations and
the consistent natural and/or geometric boundary conditions.
Once these governing equations are obtalned, it 1s necessary to
effect a solution; that 1is, determine the stresses and displace-
ments throughout the volumes. The exact solutlion of the nonlinear
system of governing equations 1s, in general, prohibitive. Thus,
approximation methods must be used. This being the case, the
extremization of the modified Hamilton/Relssner functional may be
used in more direct fashion to effect an approximate solution.
Since the vanishing of the first variation of the modified
Hamilton/Reissner functonal leads to the governing system of

10
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equations and boundary conditions, then it 1s possible to assume
a spatial distributlion and time dependence of the variational
unknowns satisfying desired boundary conditions, integrate out
the spatial dependence, and obtain a system of differential equa-
tlons for the time-dependent varlational parameters corresponding
the approximate solution of the governing equations. The result-
Ing system of nonlinear time-dependent differential equatlions may
be solved by any number of numerical procedures (for example,
Newton-Raphson for converging to a solution at any particular
time step and Runge-Kutta [14] for solution in the time domain).
The method of solution 1is outlined in a subsequent section.
Application of the Newton-Raphson iterative technique results
in the set of equations contalned in Appendix C. The principal
unknowns are the stresses (ﬁl,ﬁ2,ﬁ3,§,6) and displacements
(é,f, and g), all of which are time dependent. Once the spatial
variation of the variational unknowns 1s specified (Section 3.1),
the 1ntegrations of Appendices B and C can be performed. The
resulting set of equations are symbollically written as

Az A2 = K Ax + ﬁext + M= X= (23)

where the 1individual terms are expanded in Appendix D.

3.1 Displacement and Stress Punctions

In the more classical procedures, either Minimum Potentlal
Energy or Complementary Energy, the varliational unknowns are
elther the displacements or the stresses, respectively. The
final equations involve a relatively small number of unknowns
because elther the constitutive relations or the equilibrium
equations have been used to reduce the overall number of governing
equations to be solved. As a consequence, the final equations,
when viewed in a vector-matrix form, wherein the vector of unknown

12
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quantities are elther displacement or stress amplitudes, have
coupling matrices which are virtually fully-populated with terms;
i.e., the coupling 1s strong. However, when the Relssner varia-
tional approach is used, the vector of unknown quantities are
both displacements and stresses representing both equilibrium and
stress-displacement compatibility. The coupling matrlx between
the varlational unknowns 1s observed to be very sparse; l.e.,
loosely coupled. '

This loose coupling 1s a problem because an Ilnappropriate
cholce of displacement and stress functions can lead to a situa-
tion wherein the computed 1integral that couples the physical
terms can be zero--this would 1mply that the computational proce-
dure would not recognize the physlical coupling that 1is present in
the real-life structure. As a consequence of thls mathematlcal
conslderation, 1t 1s necessary to select a complete set of func-
tions (displacement and stress) that admit coupling between
physical quantities that should be coupled.

It should also be noted that it 1s possible to select
functions that provide for coupling when it should not occur.
This can also lead to fictitious results. In any event, the
first and foremost requirement to be placed on the selected
displacement and stress functlons 1s that the proper kind of
coupling be maintalned between the physical entities of
displacement and stress.

The next requirement to be satisfled by the distribution
functions is that they represent the physical behavior of the
structure under analysis. In practice thils 1s usually not too
difficult in the sense that 1t 1s usually easy to select elther
trigonometric or polynomic functions that match approximately the
expected displacements and stresses of the structure to be
analyzed. In this sense, for complicated problems, whereln the
exact form of the distributions 1s not known (as with the present
problem), 1t 1s necessary to select several "generlc" forms and
experliment with the combined distributions to determine which
ones provide viable solutions without disturbing the need for

13
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proper coupling as discussed previously. At this poilnt, the
selection and verification of displacement and stress functilons
used to solve the problem of the buckling, postbuckling, and
crippling of laminated composite shallow shells under combined
axial compression and shear [5] took approximately seven months
of intense effort in spite of the fact that the initlal selection
of trial functions was achleved 1n approximately two weeks. The
i1ssue of loose coupling was a major factor in the time requlred.

Although not mentioned yet, but Jjust as 1important, there are
additional requlirements that are placed on both displacement and
stress functions. For 1nstance, displacement functlions must
satisfy the boundary conditions of the problem under consideration.
Stress functions must satlsfy equilibrium across cross-~sections
as a minimum (based upon the experience of the principal investi-
gator), although this requirement can be walved under the proper
clrcumstances.

It should be remembered that in using the Reissner varlia-
i tional principle, the constltutlive relatlons are not satlsfiled
concurrently at every polint in the structure. At first thought,
this rather pointed observation 1s disturblng because most knowl-
edgeable enlgneers familiar with mechanics would state that the
constitutive relation must be satisfied at every point for the
solution to be considered correct. 1In actual practice this
presents no particular problem if some ordering of priorities 1is
kept in mind.

First, the objective 1in using the Relssner variational
approach 1s to obtain an accurate knowledge of the state of
displacement 1in the structure at the minimal computational cost.
This 1s usually achlieved by careful selectlon of a complete but
modest number of displacement functions which satisfy the boundary

conditions. Stress functions are then chosen to satisfy equl-

! librium across some cross~sectlon or area, but not at every

! point. These same stress functions must couple correctly with
the displacement functions in such a way that the finally com-
puted displacement amplitudes and distributions are accurate. In

14
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actual practice 1t takes a combination of knowledge, intultion,
and perseverance to achleve this end--but it 1s possible, as
documented in earlier similar efforts [3,4,5].

In the end, when the numerical results are produced, the
stress amplitudes are essentlally discarded in the sense that the
numerical values of stress may or may not be accurate--1it is not
important because the goal of the approach is to obtain accurate
information about dlsplacement. PFrom displacements the strailns
may be readily calculated because the straln-displacement rela-
tions are in general accurate and a single derivative does not
lead .o gross 1naccuracies. Stresses, of an accurate nature, can
be obtalned via the use of the original complete set of nonlinear
constitutive relations.

The discussions of the preceding paragraphs give an 1ldea of
the difficulties assoclated with the selectlon of displacement
and stress functions for use 1n the Relssner variational principle.
In general, these comments apply to any particular problem; how-
ever, for thls particular research concerned with the effects of
delaminations, there are some additlonal considerations that must
be accounted for. In addltion to the unique application of the
Reissner and Hamilton principles, the use of the direct varia-
tional approach to solve a problem which inherently couples local
and global displacement/stress flelds 1s also noted as a signifi-
cant challenge.

It is anticipated that interactlons between local and global
displacement/stress fields can occur deleteriously, as discussed
previously. Thus, selection of global and local functions is
potentially a difficult and time consuming process even though
the starting functions seem Intuitively obvious; 1.e., the local
stress flelds near a crack-tip representing a delamination are

generally known.

15
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3.1.1 Contiguous Composite

Based on the earlier work of Stroud and Mayers [15], the
displacements are taken as

4= u (24)

l;
Vs vin 4 v, - O - e (25)
W=y, (1= (1=n?) + Wy, (122 (nP=n™) + wy(cP-c) (1mnd)

(26)

where 7 and n are dimensionless goemetrlic coordinate parameters

defined as

¢ = 2x/a (27)
and

n = 2y/b (28)

For flat plates, the second term for the expression for v 1is
omitted.

It is apparent that for the linear thermoelastic response of
a plate with unrestralned edges, the » tions assumed for inplane
displacements are exact. The transverse-displacement expression
is a fourth-order polynomlal with all except three of the coeffil-
cients eliminated by enforcing geometric boundary condltions and
symmetry requirements (that 1is, vanlishing displacement at the
supports and symmetry about the coordinate axes).

The distributions of bending and twisting moments assumed
for the thermoelastic solution are

C T
Mop = - My + =y Np + [(1-v) (Mg - = Np) = M 551 (1-27 )n
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2 10 2 2 4 2 4., 2
ML - AT ] M5, (A=) (0T ) M (25 ) (1-0)
(29)
C T 2 10
Mog = ~Mp + 3 Np + [(Q-v) (Mg - —ﬁf Np) - My22]; (1-n"")
10, 2 2 4 2 2 2 4
+ Moo [1-(1=g70n "] + Moo (2%-27) (1=n®) + M, (1-2%) (a -0 )
(30)
- i b bl 3n
xyB = Mxyll sin 5 sin 5 n o+ Mxy13 sin 5 & sin 5— M
+ M sin 3% ¢ sin = (31)
xy31 2 2 N

3.1.2 Delaminated Composite

For a delaminated composite specimen the out-of-plane dis-
placement w 1s, 1In general, a function of the through thickness
coordinate, z, as well as the other spatial coordinates and time;
that is, w = w(z,x,y,t). Equivalently, the out-of-plane displace-
ment is considered to be a function of the lamina identification,
k; thus, each lamina can have a different functional form for the
out-of-plane displacement. For instance, in the local region
around the delamination, a potential choice for displacement

function 1is

17
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- =2
= a(x” + y_
¥iocal Wd(1 + cos a2 )

where wd is the amplitude of the delamination, X and § are
spatial coordinates located at the center of the assumed circular

delamination of radius a, and

= +
v wglobal w1oca1

where wglobal was, for a contiguous composite, the same as w.
Corresponding to this out-of-plane displacement are local
stress filelds analogous to those near a crack tip (see Sih [16],

for instance).

3.2 Iterative Solution Technique in the Time Domain

When, at any one tlime step subsequent to updating material
properties and temperatures, the governing equations are solved,
thern aX » 0 and the resulting differential equation is

it + AX + Foyg = O (32)
Defining
y = X (33)
then
My + & + F__ =0 (34)
18
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Equations (33) and (34) can be written as a set of first order
differential equations:

- /. — - ~ - A
" olly R 01| % F‘ext o)

+ + = (35)
0 TR o ~ flly 0 o]
S el h— A el a— b -

The above equation can be solved with the use of the Runge-

Kutta [14] approach.

4.0 RESULTS AND CONCLUSIONS

The objective of this Phase I research was to derive the
equations governing the response of a delaminated composite to a
rapid thermal pulse. The approach taken was one of developing a
variational formulation based on a unique coupling of Hamilton's
and Reissner's varlational theorems. The resulting equations
have been cast into a form that 1s suitable for programming on a
digital computer. The solution of these equations provides a
description of the state of displacement and stress within the

delaminated composite.

19
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APPENDIX A

MODIFIED-HAMILTON/REISSNER FUNCTIONAL

IN VECTOR-MATRIX NOTATION
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Hamilton's principle is stated as

t to
§ [ (P -U=-V)dt =6 [ (T - U™)dt = 0 (A-1)

Y B3

where the Relssner functional in vector-matrix notation [10] 1is,

+ > »>
= >T ~T T o~ 1 2T 3y 3y » ~x da 2
" fx J’y {hl xl P1 tf‘m{I 28 3x ax 8 + o + Qx ax e}

+ BT 3T T ¢ (7 13T 2 iiT* + 3 38

2 "2 "2 "fm 2 & 3y 3y & y 3y

+T

>T ~T T ~T > 1 T ~T T o~ & o~ > 3 » 1
- N B E Yt TR B o5 E R

T ~T AT & ~ 3 2aT ~T T 1
+ £ B Qy P2 Ay h2 £t B Qy ;5}

T T T T,3Y 3 3a » X

It pr £ Loy 9dY 3 g 2l 5 9B
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2T AT &7 = o~ ~ >
- R G

bon Ry Gp Ryn'd

3 3 N 3 3

T ~T AT

- Y Y ng By V) T (2684 4_4)

L=1 Ms1 MMM o2 45y ga ik 1l

p
3 3 1

) [221 mzl By X Pl Dzmijk Pn *m m] ijk PL Ahg

(N-1) p

3T ~T oT & &~ ~ ~ T ~T aT o~ o~ ~ .74
- k=21 (a® ¢ R B R,ea+b n ﬁy B, Ry n B) }dxdy
(A-2)
and similarly, the kinetic energy 1s
»>T +> T
1 36° ~T AT ~ ~ 3e , af  ~T AT ~x o~ af
T=3 i J 3 o 9 tpy QO a3 * 3¢ 8 5y tem Qy B 3%

BT 2T 3 T ¢ 2 3

+ 8- Ty Iy Top ¥ S2Yaxdy (A-3)
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APPENDIX B

PIRST VARIATION OF THE MODIFIED-HAMILTON/REISSNER FUNCTIONAL

26




Anamet Laboratories, Inc.

HAYWARD, CALIFORNIA

The governing equations which result from taking the first
variation of the modified Hamilton/Reissner functional (Eq. (A-1))
are as follows:

1 ST T . 37 o)
3y ¢ +
2 fxfy M ?1 IN B 3x 3x ‘rm & 94X
~ > 3 ~ > g
+ 3,8+ 1 §p 8+ 4 =B +B (B-1)
L=1
T
1 3T el 3 2 3Y3Y ¢ 2
5 Ixly % B Iy 855 5y Fem & dxy
3 > T &T -be
+¢2f?+1,-.z-1“’2LhL+G.2‘“*2?{2t1§'mc’)yBf’ay ®R (8=2)
~T =T T ~T ~T >~ =~ ~a21 _
+ 35 B VS 4, tpp G, B f’;g = B,
1 T T . 3y 3y »
_1 ~
2 fxfy X3 F;3 IN & 3% 2y tog & dxdy
~ .o ~T oT o~ ~ 2 3Y° a1
* $3 €T Yy £+ Lzl b3, hy, * 63 M §3 Yrm Qy Bt ax &R ° 0
(B-3)
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.,+T +‘>T
3y 3y 3 T ¢ < 3Y 3y 2 3T ¢ 5
fxfy {ax ax B IN tfm ﬁl A h1 + 3y 9y g IN tfm F2 A2 h2

T34 3.8+ X
+ ¢y @ + 4g b + 3y h2 X5 f Qy 8
3y pT T &T 1 ST T > 2°% 5
3y gT + £ 8 3 f 3 £ =
+ L B3 35 53 Erm 9y B f =+ i § Y iN IN Top 7 L2 pdxdy
(B-4)

(B-5)

¢, h, + ¢, hy, + . a + [ [ «a t. Q «a
1 1 373 5 Xy x fm X 3t2
+T
~T ~T T T o~ ~ P + 1
o, Bp + Gy By + G B+ B Q) Fop By X, Ay 55— E R

(B-6)
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~T ~T ~
¢7§+¢5g+¢9§_2fxfyk§ {pu
(p,-1)
»>T ~T AT ~ o+ > >T ~T aT &~ &5 ~ » 4
. (a R B R, ¢d+5b R, B R, 7 B)
~ AT ~ ~ ~ + _
- R B t R < a} axdy = i)
(N-1)
~T » ~T ~
¢ & * ¢¢ £+ ®0 b 2 ijy kzl {pu
(py-1)
@ TR R cEsT TR B R D
+ n" Ry B £ R n b} axdy = d
where
~ ~T ~T ~ ~ ~ ~ o~
o =~ Ixly APy tpy [Cpy v Cppd P ooy, dxdy
~ ~T ST o~ ~ = 5
o, = = Jxly Ao By tey [Cpp + COpp] By A axdy
~ ~T AT o % ~ 5 =~
031, = = Ixly 3 Pz Ppp LOL3 * C3pd By Ay dxdy
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F

APPENDIX C

NEWTON-RAPHSON ITERATIVE SOLUTION TECHNIQUE
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the following equations:

Application of the Newton-Raphson iterative technique provides

VEAZ + 5. Ad 4+ % (3,, +28%) 2R
Vi 8T 4 TS § A L
= )
3
_ _~_~+_ ~ ->_ -
= B(1) - 8% - ¢, e* LZI & B2 G; + B, (C-1)
~ ~ 3 ~ # ~ ~
A A A e MR MR POTS s P Y
L=1 3hp
=-—~—~ - Y .)— -— — -
o - §, ¢ Lzl G, BF - 4% + B, - 82 - By, (c-2)
3
V8 ag + G5 a8 + Gy af + T (Gyp 4 2G%) B+ ¥8, of + V3o 82
=1 ohp
3
= - 3% - 3 * - 3 * - Py R* - - 3= -
6y -4y & -4 T LZ1 b31, Bf - 83 - 313 (C-3)
~T = ~T = ~ T ~
viT ahy + vET ah, + y37 ahg + (V) + vE + vE) ag
~ ~ T > ~ T o ~ T ~ T
+ ¢7 ha + ¢g Ab + WIB Ah2 + WIS Ah3 + (w§7 + wie)Af
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)

= - EH - 6; - Eg - $7 at - 38 b* - 8p, - ofg - 6%, (C-4)
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~ ~ >~ ~ T, > ~ T ~ T
o, dh, + ¢E AE3 + ¢g AD (\uﬁ‘ + vi5)ah, + yfy ahg + yig rE (C-6)

~ ~ > ~T ~T ~
+ (w{? + wgg)Ag = - 4, by - §, Bt - 35 b*

- o, - of5 - 8fg - 034

¢7Ag+¢5Ae+($9+$§)A§+$§AB

= - ;? g* - ;g oF - 59 ar - 5, (c-T7)
}%‘ AE + T)%‘Afi' (310 * v8) AD + v, aa

~.

- - Gy ar - P -G, B - T (c-8)

35




Anamet Laboratories, Inc.

HAYWARD, CALIFORNIA

where
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- (T RD B R T &%) axay (C-26)
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